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Self-similar solutions of nonstationary equations of the boundary layer
in ordinary hydrodynamics are discussed in {1, 2]. In this paper self-
similar solutions of nonstationary equations of a plane magnetohydro-
dynamic boundary layer are sought. In this case, a transformation to
curvilinear coordinates of a certain special form is employed. Its
choice is determined by the requirements essential to reducing the
equations of the boundary layer to 2 system of ordinary equations.

H. Weyl’s iterative method is used to solve the equations describing
the flow over a plate suddenly set in motion.

1. Let us consider the transformation

dy

y
=z, ﬂ=&m, t=1t,
L]

(1.1)

where w is a still arbitrary function, We shall obtain
an approximation of the boundary layer in these coor-
dinates if we write the equation of magnetohydrodynam-
ics in them [3], and we shall seek their solution in
the form [4]
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with accuracy to €%, In this approximation for the base -

vectors aj, and the metric tensors gijk, glk we obtain
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(ej are the unit vectors of the Cartesian axes). The
relative change in an element of volume (Jacobian)
is given by the formula

Ydetga=Ve=w

The equétions of the boundary layer in the coordi-
nates £, 1 for Ry, = R and a given external magnetic
field Ho{He, 0, 0} have the form
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Here the superscripts are used to denote the con~-
travariant components of the vectors and the sub-
scripts the covariant components. In this case

V=7 = v Uy = WOy,

We select the following as boundary and initial con-
ditions:
n— Ulz,t), Hy— H(z,1),

T — T4z, t)'when n~o0, t>0, (1.3)
H2 = 0;

Hl = Hl (xl 0)1

V=19 =H, = T =T, (z, t) whenn=0, t>0,

= U (z, 0), T =T, (z, O)whent=0.

The continuity equations are identically satisfied
by introducing the stream function for the velocity &
and the magnetic field ¥:

Y. T
H"‘T{W’ S, §
1 s 10
1)1=———w ,’. Y v —-—"———aE' (]"4)

We shall seek the solution of Egs. (1.2) in the form
¥ = a (& )G (),
C=9Efm), T=T(H8 ).
From (1.4) and (1.5) we get

=H.(§, )G (n),

(1.5)
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In this case, Egs. (1.2) become
—al =)=t — %) —cf 'm — (e + )i =
= [ S~y (1 — G'®) — (¢, + c)GG'} = 0,
G — G = (6, + ) IG'f — Gf'} + AG""",
20,0 — ;0" + 26,/ — (e, + )8 =
= P07 + ME(fP + SPAGT)- (1.6)

The primes indicate differentiation in respect to 7,

w? U w? 9 Hpz2 c?
€y = ——p —- §2 . "¢ —_
VST e Ty e S et Gmav
. w 9w _ wl dw .,  U?
€= 5 ‘== at ' M = T - an

If we require that ¢j, S, M should be constants,
then Egs, (1.6) become ordinary equations, and (1.7)
will give the system for determining U, w, Hg, and
Te. Different cases of self-similarity are obtained
by writing different combinations of ¢j, and are pos-
sible in the following cases.

1°. Let us consider the stationary flows ¢y = c3 =
= 0. The equations of motion will be of the form

U = Blf2—1+582(1 — G2)] + S:GG,
xGI({ + fGIV — fIIG — O,

P-10" + [6' — 286f + M? (/' + §*%G'"%) = 0
(cafes + 1 ==1/8, eca=B).

These are well-known equations [6] corresponding
to a velocity of the external flow of the form U ~ x™,
U ~ e®X, In[7] the system corresponding to flow over
a plate (8 = 0) was solved by an iterative method.
Analytic expressions were obtained for the first itera-~
tions for fi, Gj.

2°, Let us consider nonstationary flows.

a) In the case co=¢cy =0, c3= 0, ¢y # 0 we have

U ~ t‘/lcl/c!' ]1‘a ~ tl/!cl/cl, Te —

w? = 263t, tcl/c'_

To determine f, G, and ® we obtain the equations

" +efmtead—f)=0
MG — G+ Gy =0,
P10 4,0 — 2,0 + M? (f72 + S2AG?) = 0. (1. 8)

The first equation of (1. 8), when S= 0, describes
the initial flow of an ordinary fluid over an infinite
plate suddenly set in motion at t = 0 and, in the first
approximation, over a cylinder. For the cases 2¢3/
/cy=a = 0.1 its solution was considered by Blasius
[8], and for ¢ =1, 2, 3, 4 by Hertler [8]. Watson [9]
gave a solution for arbitrary «. System (1.8) de-
scribes an analogous flow of a conducting fluid in a
homogeneous magnetic field directed parallel to the
flow. The solutions of the first two equations of sys-
tem (1.8) satisfying the conditions

© — 1 when n— o, 1.9)
@ = constwhenn=0,

G -1,

are of the form

1 T{a+1)

Fm) =m—2"T @+ 1) g, () =5 Faray

2c3

1 T(x+1) (m— n)
=)

G(m)=2"T (x4 1) &y, () — 2 Fla+ %)

o

_ 2 ’ 2
g, (m) —V;r(a+1)§(7 0 e dy

(I (x)—is the gamma function}.
b) In the case ¢y = c4 = ¢3 = 0, we have

ot ot
U~exp.s, Hy~exp.5, w=const,

—eaf +e6=0, AG"—¢,G'=0,
P10~ 26,68 + M2 (f' + STAG %) = 0.

These equations describe a flow along an infinite
flat plate moving at an exponentially increasing veloc-
ity. Only the value ¢y > 0 corresponds to the solution
of the boundary layer, as follows from the first equa-
tion,

c) Inthe case ¢4 =0, ¢y = ~2¢3, Cy=2m, c3=1,
we have

z
T’~—-— w1,

T
He~_' 3

z
U""Tm, R

The flow is described by the equations
AG —2m (f'G — G''fy = — 26" — G''n.
£+ 1 = 2m (= i)+
+2m (1 —8) —2(1 —f) —
— 2mS8*— (GG — G'%) =0,
P10" + 2mf8" — 4mBf +
+ 8’ 48 + ME(f? 4 STGTY = 0.
d) In the case ¢y =cy= 0, c3 = 0, ¢4 # 0 we take

cg=a, ¢cg=1 - a, 0 = o =1, Then the equations
are reduced to the form

"+ 1 {n+a (f — )} — 866" =0,
MG Fa{G'f—7"'G+ (1 —a)&'n =0, (1.10)

£ —18 (n+a (f—m} = P-10" + M2(f"2 + STAG'"),

-1, G —1, 6 — 1whenn—oo,

f=f =G =G= 0, 8 = const whenq=0.(1.11)

This case describes a nonstationary flow over a
plate set in sudden motion at a constant velocity (the
Rayleigh problem). The value a = 0 corresponds to
the initial motion of the plate and o — 1 approximate-
ly to the stationary mode. Thus, the parameter «
characterizes a change in the form of the equations
from linear (initial motion) to nonlinear (stationary
mode). An examination of the case Ry < R, Hg(0,
Hg, 0) completely duplicates the foregoing., For ex-
ample, for the Rayleigh problem we have
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"+ en+d —aff + o —j)=0
28 — " {on + (1 —a)fy =
C=Pe - ME{fr - af (1 — ).

(n =2 611:) s

Since Hj, = wHg,

Ho~[a g+ t—2t]

The boundary conditions for the system are of the
form

' —1, 8 - 1whenn- «;

f=1{1 =0, ® = const whenn=0.

2. In order to solve Eqs, (1.10), we make use of
an iterative method. Weyl [10] has demonstrated the
transformation of the Blasius differential equation to
the integral equation

n

1

1) =7 ©exp{— {7 w—nau,

Oy,

to which the iterative method, determined by the fol-
lowing conditions, is applied:

foir =T {fa"}.

This made it possible to obtain an analytic expres-
sion for f;. Weyl showed that the sequence {f,} con-
verges to a limiting function, which is a solution of
the problem. Moreover,

1" () = exp (— g0

turns out to be an acceptable approximation.to the lim-
it. In reference [7], an iterative method is applied to
solving the magnetic problem. For the case A = 1, the
convergence of the iterative process is proved there,
This method is applied below for finding the solution
of system (1,10).

A) Let us consider first the flow of a nonconducting
fluid (S = 0). The equation of motion is of the form

"+ e+ (4 —am} =0, 2.1

/' —1when 1 - oo, f=f =0whenq==0. (2.2)

We determine the iterative process in the following
manner:

"+ falofa + (1 —a)n} =0,
fa' (o) =1, fa(0)= £’ (0) = 0.
This implies that

fo () = " @) exp {— (afuos (@) du + (1 — ) T},

N

@, = O, (0) exp {-— —j— D (w—n)du + (1-—a) nT},

[ ¥

(O, = 1) @.3)

We select the initial function f; in the form

fo = e (2.4)

where ¢; is a still arbitrary constant. It can be seen
from (2, 3) that &,(0) determines the friction on the

wall 7 = 0. For a stationary flow, its value is found
by means of numerical methods,

®, = 0.4696. @.5)

The arbitrariness in the selection of ¢y and the val-
ue of ¢, can be utilized to improve the accuracy of the
approximation. We select ¢; so that when o = 1

0, (0;1) = @, (2.6)

It follows from (2.3) and (2. 4) that
@, () = @, (0;a) exp [— Y, (o + 1 —a)0®) 2. 7)

From (2.6), (2.7), and the first condition of (2. 2)
we obtain

1=0,(0;0)Van/co=0 Y 2alc.

Hence

¢y = YDy = 0.3469. (2.8)

For the nonstationary problem, we have from (2.7)

M
7 ) =V2/r®(0; a)Se’E'dg W =act+1—ah (2.9)

0

The value of &,(0, «) is determined here from the
conditions

®,(0;0)= V2 /n(aco+1—a) whenn—o, (2.10)

@, (0; 0) = Y2 /n = 0.7,

@, (0; 1) = V' 2¢/n=0.47. (2.11)

A comparison of the expressions (2,11) shows that
the friction in the initial phase of motion is almost
twice as large as in the stationary case.

B) To solve the magnetohydrodynamic problem, we

rewrite the equations (1.10) in the form
O +OMtal(f—m) —8S6Gy=0 [ =,
M to{xf— G0+ (1 —a)yy=0, G =x. 2.12)

We shall consider two sequences of functions fj,
and Gp satisfying the equations

@n' + O {1+ & (fo — M)} — 5Gna¥n = 0,
Ma' + o {nfomi — Gna®n} + (1 —a) % = >
and the boundary conditions
Fa(0) == fa’ (0) = G4 (0) = G, (0) = O,
' (00) = G’ (00) = 1.
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We select f, = ¢n, Gq = cgn as initial conditions,
where ¢, is in accordance with (2. 8); then the equa-
tions for the first iterations are of the form

D) + By {2c + (1 —a)n} + Stancyy, = 0»
My e it — B} egn + (1 — ayym = 6.

By substituting the variable ¢ = n2/2, we reduce
them to a system with constant coefficients:

Bpau=0, u=(), 4=(_ 1, =%

i, v mn ) @.18)

Here y? is determined by (2.9). The solution of
(2.13) is of the form

@, = S - S,

X= By (VP —mj e+ B (P — my) e (2. 14)

where m; and m, are the roots of the characteristic
equation A — mE = ¢
Ay = gyt (1 +4) — (AST Yt (4 — Ay,
My = 3yt (14 ) + (AS* + Yyt (1 = W)Yh,

Here m, is always positive and m, is positive when
0 = 8% = 44,

By integrating from zero to infinity, we obtain
from (2.14)

A= SZBxiGXP (“‘ ’%i) an -+ S’B%axp(—— mzzn“)dm

@ [

n
G,’:B1(T’~m,)gexp(—— m;n )dn+
/]

+ Ba (v — ma) { oxp ( — 2T . (2.15)

OOyt

The constants 8; and 8, are determined from the
equations

= =h(z) +h()
= B () ()4 Bt ()

lmy}

and are respectively equal to

Bl 824+ my—1 (2m1\'/’ 8, — 82 my —1 (27@)’/‘

= St (mg — m) N - (me—ma)\ =
When 7 = 0, we obtain from (2.14)

D(0; a) =

Y

= ___L_{(—“——> [‘92 4 m;”’"i]__(rzl_l)‘/’ {Sﬁ L my _1}}

my — my |\ 2my

The case 8 — 0, A — = corresponds to the motion
of a nonconducting fluid. In this case,m, — ¥*, m; —
— 0, 8%, — 0, %, — v (2 /)" and (2.14) becomes
2.30). For a fluid with high electric conductivity
A - 0}

M~y om0,

8%, - 0,
A P e ¢ I L T ) SO

It follows from (2.15) that in this case G' — 0, that
is, the magnetic field does not penetrate into the fluid.
When S% — 1, we have f'— 0, f¥ ~ 0, and the flow is

stopped by the magnetic field,

NOTATION

#—viscosity coefficient, v=—velocity, V-—~velocity of extemal flow,
H-intensity of magnetic field, o condﬁctivity of fluid, v—coefficient
of kinematic viscosity, R—~magnetic Reynolds nuraber, P--Prandtl num-
ber.

Primes denote differentiation; the subscript e denotes parameters of
the external flow, and the subscript s wall parameters,
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